A Brief Introduction to Krylov Space Methods for Solving Linear Systems

نویسنده

  • Martin H. Gutknecht
چکیده

With respect to the " influence on the development and practice of science and engineering in the 20th century " , Krylov space methods are considered as one of the ten most important classes of numerical methods [1]. Large sparse linear systems of equations or large sparse matrix eigenvalue problems appear in most applications of scientific computing. Sparsity means that most elements of the matrix involved are zero. In particular, discretization of PDEs with the finite element method (FEM) or with the finite difference method (FDM) leads to such problems. In case the original problem is nonlinear, linearization by Newton's method or a Newton-type method leads again to a linear problem. We will treat here systems of equations only, but many of the numerical methods for large eigenvalue problems are based on similar ideas as the related solvers for equations. Sparse linear systems of equations can be solved by either so-called sparse direct solvers, which are clever variations of Gauss elimination, or by iterative methods. In the last thirty years, sparse direct solvers have been tuned to perfection: on the one hand by finding strategies for permuting equations and unknowns to guarantee a stable LU decomposition and small fill-in in the triangular factors, and on the other hand by organizing the computation so that optimal use is made of the hardware, which nowadays often consists of parallel computers whose architecture favors block operations with data that are locally stored or cached. The iterative methods that are today applied for solving large-scale linear systems are mostly preconditioned Krylov (sub)space solvers. Classical methods that do not belong to this class, like the successive overrelaxation (SOR) method, are no longer competitive. However, some of the classical matrix splittings, e.g. the one of SSOR (the symmetric version of SOR), are still used for preconditioning. Multigrid is in theory a very effective iterative method, but normally it is now applied as an inner iteration with a Krylov space solver as outer iteration; then, it can also be considered as a preconditioner. In the past, Krylov space solvers were referred to also by other names such as semi-iterative methods and polynomial acceleration methods. Some

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Solving Shifted Linear Systems with Gmres and Applications to Lattice Gauge Theory Solving Shifted Linear Systems with Gmres and Applications to Lattice Gauge Theory 1. Introduction

of a matrix M 2 C nn and a vector r 2 C n are identical for all 2 C. This fact can be used in Krylov subspace iterative methods (where the

متن کامل

Block Krylov Space Methods for Linear Systems with Multiple Right-hand Sides: an Introduction

In a number of applications in scientific computing and engineering one has to solve huge sparse linear systems of equations with several right-hand sides that are given at once. Block Krylov space solvers are iterative methods that are especially designed for such problems and have fundamental advantages over the corresponding methods for systems with a single right-hand side: much larger sear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006